Problem Set 2 - Solution - LV 141.A55 QISS

1. Qubit States

(a)

¥) = =5 (10) —i[1)) 0=m/2, p=m/2
|0) = 10)+ 2 1) (U|¥) # 1 not a valid state
| W) = % (710) 4 |1)) This state is the same as the first state up

to a irrelevant global phase
|¥) = —0.60) +0.81) 0=1.8546, p =m

@) = /5 /1+ S5 10) + L2, 1= 3 11) 0= 0.9553 = arccos( ), ¢ = —/4
In Python you can verify the norm with the following command

psi=array([[-0.6],[0.8]1)
dot (transpose(psi),psi)

The angles can be calculated in the following way

from pauli import *

sx=dot (transpose(psi) ,dot(sigma_x,psi))
sy=dot (transpose(psi) ,dot(sigma_y,psi))
sz=dot (transpose(psi) ,dot(sigma_z,psi))
theta=arccos(sz)

phi=arctan2(sy,sx)

N

tr(p) = 2, not a valid density matrix
tr(p?) = 1 pure state, (1,0,0)

tr(p2) = 3/4 mixed state, (07%7%)
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i tr(p?) = 1 pure state, (%, %, %)
16_1' 3_2£ note: this is the same state as the last in
2v3 6 exercise 1(a) |¥) (U]
1 —l+i

1 2‘/5; tr(p?) = 1 pure state, (%,%70)

22 2
0.9607 0.1661 — 0.1006¢ o
0.1661 + 0.1006i 0.0393 ) tr(p?) = 1 pure state, (0.3322, 0.2012, 0.9214)

With Python you solve the problem in the following way

rho=array([[0.9607,0.1661-0.1006j], [0.1661+0.1006j, 0.0393]1])
trace(rho)

trace(dot (rho,rho))

trace(dot(rho,sigma_x))

trace(dot (rho,sigma_y))

trace(dot (rho,sigma_z))

2. Qubit Hamiltonian

A D
H:Aaz—l—DUm:(D —A)

Eigenenergies
EO,l = F A2 + D?

tr(p?) = 3/2, not a valid density matrix



We can introduce the angle §, which is the angle between the original states |0), |1) and the
eigenstates |£o), |€1) (see Figure 1)

tan(d) = g

Eigenstates can now easily expressed in terms of a rotation with angle §

[€0) = cos(6/2)]0) —sin(6/2)[1)

&) = sin(6/2)[0) + cos(6/2) [1)
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Figure 1: Eigenstates £ and &; on the Bloch Sphere. The angle § describes the angle between the original
states |0), |1) and the eigenstates |£p), |£1).
Since the Hamiltonian is time constant, you can easily calculate the time evolution
[U(1)) = e"Po™ [€o) (ol W (0) + ™t/ [¢1) (€] W(0))

3. Rabi’s Formula

(a) Plugging the following Hamiltonian

hw A
H= TOO'Z + 3 (04 cos(wt) + o, sin(wt))
into the Schrédinger equation
g
h—WU = HU
ot

and introducing hwy := A and |U(¢)) = a1(¢)|1) + ao(t)]0), we end up with the following
coupled differential equation system

’LQ aq (t) _ 1 wo wle’m ai (t)
ot \ ao(t) )~ 2\ wie™? —wo ao(t)
The problem now is that we have time varying coefficients (e*?) in the off diagonal terms. We
can get rid of the terms by making a transformation into a rotating frame:

bl(t) = al(t)ei”t/Q
bo(t) = ao(t)e_th/Q

[B(6)) = b1(t) 11) + bo(t) 0)

g () =2 (2 2) ()

where Aw = wy — w .



(b) We can apply the solution from problem 2:
(1w(e) = (118(0)) = 50 (1165) (ol0) + /" (1]61) {61]0)

The eigenenergies are
E1 = h\/ sz —+ w%
Eo = 771\ / Aw? + w%

and the rotation angle

tand = F;
The matrix elements
(11€0) —sin(0/2)
(&0]0) cos(6/2)
(11&) = cos(6/2)
(€1]0) = sin(6/2)

after some algebra we can find

w2 . / 2
1

t,domega=meshgrid(linspace(0,3%pi,401),linspace(-2,2,401))
rabi=1/(1+domega**2)*sin (t*sqrt (domega**2+1) ) **2
pcolor(t,domega,rabi)

colorbar ()

title(’Rabi\’s Formula ($\omega_1=18$)’)

xlabel(’t?)

ylabel (’$\Delta\omega$’)

Rabi's Formula (wlzl)

-2

-1

Note that this is a Lorentzian lineshape



WRabi = 21/ Aw? + w?

On resonance (i.e. Aw = 0) the Rabi frequency is wrapi = 24/



